Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.529
Filtrar
1.
PLoS Negl Trop Dis ; 18(4): e0012103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620045

RESUMEN

BACKGROUND: The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY: Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS: Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION: Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.


Asunto(s)
Ginkgo biloba , Melarsoprol , Estrés Oxidativo , Extractos Vegetales , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana , Animales , Ratones , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ginkgo biloba/química , Trypanosoma brucei rhodesiense/efectos de los fármacos , Melarsoprol/farmacología , Masculino , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Modelos Animales de Enfermedad , Encéfalo/efectos de los fármacos , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Antioxidantes/farmacología , Inflamación/tratamiento farmacológico
2.
Clin Infect Dis ; 78(Supplement_2): S175-S182, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662705

RESUMEN

BACKGROUND: Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS: We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS: We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS: Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.


Asunto(s)
Infecciones Asintomáticas , Enfermedad de Chagas , Leishmaniasis Visceral , Modelos Teóricos , Enfermedades Desatendidas , Humanos , Enfermedades Desatendidas/prevención & control , Enfermedades Desatendidas/epidemiología , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/prevención & control , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/tratamiento farmacológico , Infecciones Asintomáticas/epidemiología , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/transmisión , Leishmaniasis Visceral/tratamiento farmacológico , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/transmisión , Tripanosomiasis Africana/tratamiento farmacológico , India/epidemiología , Animales
3.
Tidsskr Nor Laegeforen ; 144(3)2024 Feb 27.
Artículo en Noruego, Inglés | MEDLINE | ID: mdl-38451073

RESUMEN

Background: African sleeping sickness is a neglected tropical disease seldom seen in European travellers. Case presentation: While working in Eastern Africa, a Norwegian man in his sixties developed weakness and fever. He was prescribed doxycycline after a negative malaria rapid test. On the third day of illness he returned to Norway and was admitted to the hospital upon arrival. On admission he was somnolent with fever, tachypnoea, tachycardia, jaundice, a hyperaemic rash, oliguria and haematuria. Blood tests revealed leukopenia, thrombocytopaenia, renal failure and liver dysfunction. Rapid tests were negative for malaria and dengue. Blood microscopy revealed high parasitaemia with trypanosomes indicating human African sleeping-sickness. He had been bitten by a tsetse fly 11 days prior in an area endemic for Trypanosoma brucei gambiense. However, the clinical picture was consistent with Trypanosoma brucei rhodesiense infection (East African sleeping sickness). Four days after starting treatment with suramin, spinal fluid examination revealed mild mononuclear pleocytosis but no visible parasites. Melarsoprol treatment for possible encephalitis was considered but suramin treatment was continued alone. He improved and remains healthy seven years later. PCR on blood was positive for T. b. rhodesiense. Interpretation: African sleeping sickness can also affect tourists to endemic areas. Onset can be acute, life-threatening and requires treatment with antiparasitic drugs not generally available in Norwegian hospitals.


Asunto(s)
Exantema , Malaria , Tripanosomiasis Africana , Humanos , Masculino , Doxiciclina , Fiebre/etiología , Suramina , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/tratamiento farmacológico , Persona de Mediana Edad , Anciano
4.
Int J Parasitol Drugs Drug Resist ; 24: 100529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461700

RESUMEN

Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC50 0.5 and 1.5 µM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC50 against bloodstream Trypanosoma brucei in the sub-µM range (IC50 0.35-0.77 µM) and four of them showed an improved selectivity (selectivity index >38-folds vs. murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Ratones , Humanos , Homeostasis , Oxidación-Reducción , Tripanosomiasis Africana/tratamiento farmacológico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
5.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38426744

RESUMEN

Trypanosomosis is a disease complex which affects both humans and animals in sub-Saharan Africa, transmitted by the tsetse fly and distributed within the tsetse belt of Africa. But some trypanosome species, for example, Trypanosoma brucei evansi, T. vivax, T. theileri and T. b. equiperdum are endemic outside the tsetse belt of Africa transmitted by biting flies, for example, Tabanus and Stomoxys, or venereal transmission, respectively. Trypanocidal drugs remain the principal method of animal trypanosomosis control in most African countries. However, there is a growing concern that their effectiveness may be severely curtailed by widespread drug resistance. A minimum number of six male cattle calves were recruited for the study. They were randomly grouped into two (T. vivax and T. congolense groups) of three calves each. One calf per group served as a control while two calves were treatment group. They were inoculated with 105 cells/mL parasites in phosphate buffered solution (PBS) in 2 mL. When parasitaemia reached 1 × 107.8 cells/mL trypanosomes per mL in calves, treatment was instituted with 20 mL (25 mg/kg in 100 kg calf) ascofuranone (AF) for treatment calves, while the control ones were administered a placebo (20 mL PBS) intramuscularly. This study revealed that T. vivax was successfully cleared by AF but the T. congolense group was not cleared effectively.Contribution: There is an urgent need to develop new drugs which this study sought to address. It is suggested that the AF compound can be developed further to be a sanative drug for T. vivax in non-tsetse infested areas like South Americas.


Asunto(s)
Sesquiterpenos , Tripanocidas , Tripanosomiasis Africana , Animales , Bovinos , Masculino , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Africana/epidemiología , Moscas Tse-Tse/parasitología
6.
J Med Chem ; 67(5): 3437-3447, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38363074

RESUMEN

Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 µM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Humanos , Animales , Ratones , Tripanosomiasis Africana/tratamiento farmacológico , Trypanosoma brucei rhodesiense , Trypanosoma brucei gambiense , Tripanocidas/toxicidad , Tripanocidas/uso terapéutico
7.
Exp Parasitol ; 259: 108711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38355002

RESUMEN

Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 µM; SI 686.45) and 9 (IC50 0.07 ± 0.04 µM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 µM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 µM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 µM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 µM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 µM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Bovinos , Nitrofurantoína/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/parasitología , Mamíferos
8.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394930

RESUMEN

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Asunto(s)
Parásitos , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Tripanocidas/química , Trypanosoma brucei rhodesiense , Guanidina/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Guanidinas/farmacología , Metabolismo Energético , Mamíferos
9.
Metabolomics ; 20(2): 25, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393408

RESUMEN

INTRODUCTION: Human African trypanosomiasis, commonly known as sleeping sickness, is a vector-borne parasitic disease prevalent in sub-Saharan Africa and transmitted by the tsetse fly. Suramin, a medication with a long history of clinical use, has demonstrated varied modes of action against Trypanosoma brucei. This study employs a comprehensive workflow to investigate the metabolic effects of suramin on T. brucei, utilizing a multimodal metabolomics approach. OBJECTIVES: The primary aim of this study is to comprehensively analyze the metabolic impact of suramin on T. brucei using a combined liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) approach. Statistical analyses, encompassing multivariate analysis and pathway enrichment analysis, are applied to elucidate significant variations and metabolic changes resulting from suramin treatment. METHODS: A detailed methodology involving the integration of high-resolution data from LC-MS and NMR techniques is presented. The study conducts a thorough analysis of metabolite profiles in both suramin-treated and control T. brucei brucei samples. Statistical techniques, including ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA), ANOVA 2 analysis, and bootstrap tests, are employed to discern the effects of suramin treatment on the metabolomics outcomes. RESULTS: Our investigation reveals substantial differences in metabolic profiles between the control and suramin-treated groups. ASCA and PCA analysis confirm distinct separation between these groups in both MS-negative and NMR analyses. Furthermore, ANOVA 2 analysis and bootstrap tests confirmed the significance of treatment, time, and interaction effects on the metabolomics outcomes. Functional analysis of the data from LC-MS highlighted the impact of treatment on amino-acid, and amino-sugar and nucleotide-sugar metabolism, while time effects were observed on carbon intermediary metabolism (notably glycolysis and di- and tricarboxylic acids of the succinate production pathway and tricarboxylic acid (TCA) cycle). CONCLUSION: Through the integration of LC-MS and NMR techniques coupled with advanced statistical analyses, this study identifies distinctive metabolic signatures and pathways associated with suramin treatment in T. brucei. These findings contribute to a deeper understanding of the pharmacological impact of suramin and have the potential to inform the development of more efficacious therapeutic strategies against African trypanosomiasis.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Suramina/farmacología , Suramina/metabolismo , Suramina/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Metabolómica/métodos , Trypanosoma brucei brucei/metabolismo , Flujo de Trabajo
10.
J Med Chem ; 67(4): 2849-2863, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38330051

RESUMEN

Human African trypanosomiasis (HAT) still faces few therapeutic options and emerging drug resistance, stressing an urgency for novel antitrypanosomal drug discovery. Here, we describe lead optimization efforts aiming at improving antitrypanosomal efficacy and better physicochemical properties based on our previously reported optimized hit NPD-2975 (pIC50 7.2). Systematic modification of the 5-phenylpyrazolopyrimidinone NPD-2975 led to the discovery of a R4-substituted analogue 31c (NPD-3519), showing higher in vitro potency (pIC50 7.8) against Trypanosoma brucei and significantly better metabolic stability. Further, in vivo pharmacokinetic evaluation of 31c and experiments in an acute T. brucei mouse model confirmed improved oral bioavailability and antitrypanosomal efficacy at 50 mg/kg with no apparent toxicity. With good physicochemical properties, low toxicity, improved pharmacokinetic features, and in vivo efficacy, 31c may serve as a promising candidate for future drug development for HAT.


Asunto(s)
Antiprotozoarios , Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Ratones , Humanos , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Antiprotozoarios/uso terapéutico , Desarrollo de Medicamentos
11.
ChemMedChem ; 19(8): e202300656, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38277231

RESUMEN

Studies have shown that depending on the substitution pattern, microtubule (MT)-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) can produce different cellular responses in mammalian cells that may be due to these compounds interacting with distinct binding sites within the MT structure. Selected TPDs are also potently bioactive against the causative agent of human African trypanosomiasis, Trypanosoma brucei, both in vitro and in vivo. So far, however, there has been no direct evidence of tubulin engagement by these TPDs in T. brucei. Therefore, to enable further investigation of anti-trypanosomal TPDs, a TPD derivative amenable to photoaffinity labeling (PAL) was designed, synthesized, and evaluated in PAL experiments using HEK293 cells and T. brucei. The data arising confirmed specific labeling of T. brucei tubulin. In addition, proteomic data revealed differences in the labeling profiles of tubulin between HEK293 and T. brucei, suggesting structural differences between the TPD binding site(s) in mammalian and trypanosomal tubulin.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Tubulina (Proteína)/metabolismo , Células HEK293 , Proteómica , Tripanosomiasis Africana/tratamiento farmacológico , Trypanosoma brucei brucei/metabolismo , Pirimidinas/química , Tripanocidas/química , Mamíferos/metabolismo
12.
BMC Vet Res ; 20(1): 32, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279149

RESUMEN

BACKGROUND: Animal trypanosomiasis is a major livestock problem due to its socioeconomic impacts in tropical countries. Currently used trypanocides are toxic, expensive, and the parasites have developed resistance to the existing drugs, which calls for an urgent need of new effective and safe chemotherapeutic agents from alternative sources such as medicinal plants. In Ethiopian traditional medicine fresh leaves of Ranunculus multifidus Forsk, are used for the treatment of animal trypanosomiasis. The present study aimed to evaluate the antitrypanosomal activity of the fresh leaves of R. multifidus and its major compound anemonin against Trypanosoma congolense field isolate. METHODS: Fresh leaves of R. multifidus were extracted by maceration with 80% methanol and hydro-distillation to obtain the corresponding extracts. Anemonin was isolated from the hydro-distilled extract by preparative TLC. For the in vitro assay, 0.1, 0.4, 2 and 4 mg/ml of the test substances were incubated with parasites and cessation or drop in motility of the parasites was monitored for a total duration of 1 h. In the in vivo assay, the test substances were administered intraperitoneally daily for 7 days to mice infected with Trypanosoma congolense. Diminazene aceturate and 1% dimethylsulfoxide (DMSO) were used as positive and negative controls, respectively. RESULTS: Both extracts showed antitrypanosomal activity although the hydro-distilled extract demonstrated superior activity compared to the hydroalcoholic extract. At a concentration of 4 mg/ml, the hydro-distilled extract drastically reduced motility of trypanosomes within 20 min. Similarly, anemonin at the same concentration completely immobilized trypanosomes within 5 min of incubation, while diminazene aceturate (28.00 mg/kg/day) immobilized the parasites within 10 min. In the in vivo antitrypanosomal assay, anemonin eliminates parasites at all the tested doses (8.75, 17.00 and 35.00 mg/kg/day) and prevented relapse, while in diminazene aceturate-treated mice the parasites reappeared on days 12 to 14. CONCLUSIONS: The current study demonstrated that the fresh leaves of R. multifidus possess genuine antitrypanosomal activity supporting the use of the plant for the treatment of animal trypanosomiasis in traditional medicine. Furthermore, anemonin appears to be responsible for the activity suggesting its potential as a scaffold for the development of safe and cost effective antitrypanosomal agent.


Asunto(s)
Furanos , Ranunculus , Tripanocidas , Tripanosomiasis Africana , Animales , Ratones , Diminazeno/farmacología , Diminazeno/uso terapéutico , Músculos Paraespinales , Extractos Vegetales/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Trypanosoma congolense , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria
13.
Fundam Clin Pharmacol ; 38(1): 72-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37479675

RESUMEN

Human African trypanosomosis (HAT) which is also known as sleeping sickness is caused by Trypanosoma brucei gambiense that is endemic in western and central Africa and T. b. rhodesiense that is endemic in eastern and southern Africa. Drugs used for treatment against HAT first stage have limited effectiveness, and the second stage drugs have been reported to be toxic, expensive, and have time-consuming administration, and parasitic resistance has developed against these drugs. The aim of this study was to evaluate the anti-trypanosomal activity of nitrofurantoin-triazole hybrids against T. b. gambiense and T. b. rhodesiense parasites in vitro. This study screened 19 synthesized nitrofurantoin-triazole (NFT) hybrids on two strains of human trypanosomes, and cytotoxicity was evaluated on Madin-Darby bovine kidney (MDBK) cells. The findings in this study showed that an increase in the chain length and the number of carbon atoms in some n-alkyl hybrids influenced the increase in anti-trypanosomal activity against T. b. gambiense and T. b. rhodesiense. The short-chain n-alkyl hybrids showed decreased activity compared to the long-chain n-alkyl hybrids, with increased activity against both T. b. gambiense and T. b. rhodesiense. Incorporation of additional electron-donating substituents in some NFT hybrids showed increased anti-trypanosomal activity than to electron-withdrawing substituents in NFT hybrids. All 19 NFT hybrids tested displayed better anti-trypanosomal activity against T. b. gambiense than T. b. rhodesiense. The NFT hybrid no. 16 was among the best performing hybrids against both T. b. gambiense (0.08 ± 0.04 µM) and T. b.rhodesiense (0.11 ± 0.06 µM), and its activity might be influenced by the introduction of fluorine in the para-position on the benzyl ring. Remarkably, the NFT hybrids in this study displayed weak to moderate cytotoxicity on MDBK cells. All of the NFT hybrids in this study had selectivity index values ranging from 18 to greater than 915, meaning that they were up to 10-100 times fold selective in their anti-trypanosomal activity. The synthesized NFT hybrids showed strong selectivity >10 to T. b. gambiense and T. b. rhodesiense, which indicates that they qualify from the initial selection criteria for potential hit drugs.


Asunto(s)
Nitrofurantoína , Tripanosomiasis Africana , Humanos , Animales , Bovinos , Nitrofurantoína/uso terapéutico , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/parasitología , Trypanosoma brucei gambiense
14.
Curr Top Med Chem ; 24(2): 89-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37842892

RESUMEN

Recent developments in the use of natural product-based molecules as antiparasitic agents for Malaria, leishmaniasis (LE), Chagas disease (CD), and Human African trypanosomiasis (HAT) are reviewed. The role of diverse plants in developing bioactive species is discussed in addition to analyzing the structural diversity of natural products as active agents and the diverse biological applications in CD, HAT, LE, and Malaria. This review focuses on medicinal chemistry, emphasizing the structural characteristics of natural molecules as bioactive agents against parasitic infections caused by Leishmania, Trypanosoma, and Plasmodium parasites.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Enfermedad de Chagas , Leishmaniasis , Malaria , Tripanosomiasis Africana , Animales , Humanos , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Antiparasitarios/química , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedades Desatendidas/parasitología , Tripanosomiasis Africana/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico , Enfermedad de Chagas/tratamiento farmacológico , Malaria/tratamiento farmacológico
15.
Eur J Pharm Sci ; 192: 106668, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065268

RESUMEN

African trypanosomiasis is a significant vector-borne disease of humans and animals in the tsetse fly belt of Africa, particularly affecting production animals such as cattle, and thus, hindering food security. Trypanosoma congolense (T. congolense), the causative agent of nagana, is livestock's most virulent trypanosome species. There is currently no vaccine against trypanosomiasis; its treatment relies solely on chemotherapy. However, pathogenic resistance has been established against trypanocidal agents in clinical use. This underscores the need to develop new therapeutics to curb trypanosomiasis. Many nitroheterocyclic drugs or compounds, including nitrofurantoin, possess antiparasitic activities in addition to their clinical use as antibiotics. The current study evaluated the in vitro trypanocidal potency and in vivo treatment efficacy of previously synthesized antileishmanial active oligomeric ethylene glycol derivatives of nitrofurantoin. The trypanocidal potency of analogues 2a-o varied among the trypanosome species; however, T. congolense strain IL3000 was more susceptible to these drug candidates than the other human and animal trypanosomes. The arylated analogues 2k (IC50 0.04 µM; SI >6365) and 2l (IC50 0.06 µM; SI 4133) featuring 4-chlorophenoxy and 4-nitrophenoxy moieties, respectively, were revealed as the most promising antitrypanosomal agents of all analogues against T. congolense strain IL3000 trypomastigotes with nanomolar activities. In a preliminary in vivo study involving T. congolense strain IL3000 infected BALB/c mice, the oral administration of 100 mg/kg/day of 2k caused prolonged survival up to 18 days post-infection relative to the infected but untreated control mice which survived 9 days post-infection. However, no cure was achieved due to its poor solubility in the in vivo testing medium, assumably leading to low oral bioavailability. These results confirm the importance of the physicochemical properties lipophilicity and water solubility in attaining not only in vitro trypanocidal potency but also in vivo treatment efficacy. Future work will focus on the chemical optimization of 2k through the investigation of analogues containing solubilizing groups at certain positions on the core structure to improve solubility in the in vivo testing medium which, in the current investigation, is the biggest stumbling block in successfully treating either animal or human Trypanosoma infections.


Asunto(s)
Tripanosomiasis Africana , Tripanosomiasis , Humanos , Animales , Bovinos , Ratones , Nitrofurantoína , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/veterinaria , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/veterinaria , Resultado del Tratamiento , Glicoles de Etileno/uso terapéutico
16.
Eur J Med Chem ; 263: 115954, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37984297

RESUMEN

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense and rhodesiense, is a parasitic disease endemic to sub-Saharan Africa. Untreated cases of HAT can be severely debilitating and fatal. Although the number of reported cases has decreased progressively over the last decade, the number of effective and easily administered medications is very limited. In this work, we report the antitrypanosomal activity of a series of potent compounds. A subset of molecules in the series are highly selective for trypanosomes and are metabolically stable. One of the compounds, (E)-N-(4-(methylamino)-4-oxobut-2-en-1-yl)-5-nitrothiophene-2-carboxamide (10), selectively inhibited the growth of T. b. brucei, T. b. gambiense and T. b. rhodesiense, have excellent oral bioavailability and was effective in treating acute infection of HAT in mouse models. Based on its excellent bioavailability, compound 10 and its analogs are candidates for lead optimization and pre-clinical investigations.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Ratones , Humanos , Trypanosoma brucei rhodesiense , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Trypanosoma brucei gambiense
17.
Parasitol Res ; 123(1): 11, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057659

RESUMEN

Suramin was the first drug developed using the approach of medicinal chemistry by the German Bayer company in the 1910s for the treatment of human African sleeping sickness caused by the two subspecies Trypanosoma brucei gambiense and Trypanosoma brucei rhodesienese. However, the drug was politically instrumentalized by the German government in the 1920s in an attempt to regain possession of its former African colonies lost after the First World War. For this reason, the formula of suramin was kept secret for more than 10 years. Eventually, the French pharmacist Ernest Fourneau uncovered the chemical structure of suramin by reverse engineering and published the formula of the drug in 1924. During the Nazi period, suramin became the subject of colonial revisionism, and the development of the drug was portrayed in books and films to promote national socialist propaganda. Ever since its discovery, suramin has also been tested for bioactivity against numerous other infections and diseases. However, sleeping sickness caused by Trypanosoma brucei rhodesiense is the only human disease for which treatment with suramin is currently approved.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Suramina/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Trypanosoma brucei rhodesiense
18.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005256

RESUMEN

The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.


Asunto(s)
Leishmania major , Trypanosoma brucei brucei , Tripanosomiasis Africana , Humanos , Animales , Tetrahidrofolato Deshidrogenasa/metabolismo , Pteridinas/química , Tripanosomiasis Africana/tratamiento farmacológico
20.
Future Med Chem ; 15(16): 1449-1467, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37701989

RESUMEN

Background: Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Methodology & results: Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Trypanosoma cruzi) were created. These models successfully discovered four new experimental hits (LC-3, LC-4, LC-6 and LC-15). Among them, LC-6 showed promising results, with IC50 values ranging 0.01-0.072 µM and selectivity indices >10,000. Conclusion: These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/tratamiento farmacológico , Tripanocidas/farmacología , Enfermedad de Chagas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...